Local Ring - Definition and First Consequences

Definition and First Consequences

A ring R is a local ring if it has any one of the following equivalent properties:

  • R has a unique maximal left ideal.
  • R has a unique maximal right ideal.
  • 1 ≠ 0 and the sum of any two non-units in R is a non-unit.
  • 1 ≠ 0 and if x is any element of R, then x or 1 − x is a unit.
  • If a finite sum is a unit, then so are some of its terms (in particular the empty sum is not a unit, hence 1 ≠ 0).

If these properties hold, then the unique maximal left ideal coincides with the unique maximal right ideal and with the ring's Jacobson radical. The third of the properties listed above says that the set of non-units in a local ring forms a (proper) ideal, necessarily contained in the Jacobson radical. The fourth property can be paraphrased as follows: a ring R is local if and only if there do not exist two coprime proper (principal) (left) ideals where two ideals I1, I2 are called coprime if R = I1 + I2.

In the case of commutative rings, one does not have to distinguish between left, right and two-sided ideals: a commutative ring is local if and only if it has a unique maximal ideal.

Some authors require that a local ring be (left and right) Noetherian, and the non-Noetherian rings are then called quasi-local rings. In this article this requirement is not imposed.

A local ring that is an integral domain is called a local domain.

Read more about this topic:  Local Ring

Famous quotes containing the words definition and/or consequences:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    The middle years are ones in which children increasingly face conflicts on their own,... One of the truths to be faced by parents during this period is that they cannot do the work of living and relating for their children. They can be sounding boards and they can probe with the children the consequences of alternative actions.
    Dorothy H. Cohen (20th century)