Local Ring
In abstract algebra, more particularly in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies local rings and their modules.
In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal.
The concept of local rings was introduced by Wolfgang Krull in 1938 under the name Stellenringe. The English term local ring is due to Zariski.
Read more about Local Ring: Definition and First Consequences, Examples
Famous quotes containing the words local and/or ring:
“Reporters for tabloid newspapers beat a path to the park entrance each summer when the national convention of nudists is held, but the cults requirement that visitors disrobe is an obstacle to complete coverage of nudist news. Local residents interested in the nudist movement but as yet unwilling to affiliate make observations from rowboats in Great Egg Harbor River.”
—For the State of New Jersey, U.S. public relief program (1935-1943)
“Time has no divisions to mark its passage, there is never a thunderstorm or blare of trumpets to announce the beginning of a new month or year. Even when a new century begins it is only we mortals who ring bells and fire off pistols.”
—Thomas Mann (18751955)