In abstract algebra, the endomorphism ring of an abelian group X, denoted by End(X), is the set of all homomorphisms of X into itself. The addition operation is defined by pointwise addition of functions and the multiplication operation is defined by function composition.
The type of functions involved can change depending upon the category of the Abelian group under examination. The endomorphism ring encodes several internal properties of the object. As the resulting object is often an algebra over some ring R, this may also be called the endomorphism algebra.
Read more about Endomorphism Ring: Description, Examples, Properties
Famous quotes containing the word ring:
“What is a novel? I say: an invented story. At the same time a story which, though invented has the power to ring true. True to what? True to life as the reader knows life to be or, it may be, feels life to be. And I mean the adult, the grown-up reader. Such a reader has outgrown fairy tales, and we do not want the fantastic and the impossible. So I say to you that a novel must stand up to the adult tests of reality.”
—Elizabeth Bowen (18991973)