Endomorphism Ring

In abstract algebra, the endomorphism ring of an abelian group X, denoted by End(X), is the set of all homomorphisms of X into itself. The addition operation is defined by pointwise addition of functions and the multiplication operation is defined by function composition.

The type of functions involved can change depending upon the category of the Abelian group under examination. The endomorphism ring encodes several internal properties of the object. As the resulting object is often an algebra over some ring R, this may also be called the endomorphism algebra.

Read more about Endomorphism Ring:  Description, Examples, Properties

Famous quotes containing the word ring:

    The world,—this shadow of the soul, or other me, lies wide around. Its attractions are the keys which unlock my thoughts and make me acquainted with myself. I run eagerly into this resounding tumult. I grasp the hands of those next to me, and take my place in the ring to suffer and to work, taught by an instinct, that so shall the dumb abyss be vocal with speech.
    Ralph Waldo Emerson (1803–1882)