Lie Algebra - Structure Theory and Classification

Structure Theory and Classification

Every finite-dimensional real or complex Lie algebra has a faithful representation by matrices (Ado's theorem). Lie's fundamental theorems describe a relation between Lie groups and Lie algebras. In particular, any Lie group gives rise to a canonically determined Lie algebra (concretely, the tangent space at the identity), and conversely, for any Lie algebra there is a corresponding connected Lie group (Lie's third theorem). This Lie group is not determined uniquely, however, any two connected Lie groups with the same Lie algebra are locally isomorphic, and in particular, have the same universal cover. For instance, the special orthogonal group SO(3) and the special unitary group SU(2) give rise to the same Lie algebra, which is isomorphic to R3 with the cross-product, and SU(2) is a simply-connected twofold cover of SO(3). Real and complex Lie algebras can be classified to some extent, and this is often an important step toward the classification of Lie groups.

Read more about this topic:  Lie Algebra

Famous quotes containing the words structure and/or theory:

    One theme links together these new proposals for family policy—the idea that the family is exceedingly durable. Changes in structure and function and individual roles are not to be confused with the collapse of the family. Families remain more important in the lives of children than other institutions. Family ties are stronger and more vital than many of us imagine in the perennial atmosphere of crisis surrounding the subject.
    Joseph Featherstone (20th century)

    The great tragedy of science—the slaying of a beautiful theory by an ugly fact.
    Thomas Henry Huxley (1825–1895)