Index of A Subgroup

Index Of A Subgroup

In mathematics, specifically group theory, the index of a subgroup H in a group G is the "relative size" of H in G: equivalently, the number of "copies" (cosets) of H that fill up G. For example, if H has index 2 in G, then intuitively "half" of the elements of G lie in H. The index of H in G is usually denoted |G : H| or or (G:H).

Formally, the index of H in G is defined as the number of cosets of H in G. (The number of left cosets of H in G is always equal to the number of right cosets.) For example, let Z be the group of integers under addition, and let 2Z be the subgroup of Z consisting of the even integers. Then 2Z has two cosets in Z (namely the even integers and the odd integers), so the index of 2Z in Z is two. In general,

for any positive integer n.

If N is a normal subgroup of G, then the index of N in G is also equal to the order of the quotient group G / N, since this is defined in terms of a group structure on the set of cosets of N in G.

If G is infinite, the index of a subgroup H will in general be a non-zero cardinal number. It may be finite - that is, a positive integer - as the example above shows.

If G and H are finite groups, then the index of H in G is equal to the quotient of the orders of the two groups:

This is Lagrange's theorem, and in this case the quotient is necessarily a positive integer.

Read more about Index Of A Subgroup:  Properties, Examples, Infinite Index, Finite Index, Normal Subgroups of Prime Power Index

Famous quotes containing the word index:

    Exile as a mode of genius no longer exists; in place of Joyce we have the fragments of work appearing in Index on Censorship.
    Nadine Gordimer (b. 1923)