Properties
- If H is a subgroup of G and K is a subgroup of H, then
- If H and K are subgroups of G, then
-
- with equality if HK = G. (If |G : H ∩ K| is finite, then equality holds if and only if HK = G.)
- Equivalently, if H and K are subgroups of G, then
-
- with equality if HK = G. (If |H : H ∩ K| is finite, then equality holds if and only if HK = G.)
- If G and H are groups and φ: G → H is a homomorphism, then the index of the kernel of φ in G is equal to the order of the image:
- Let G be a group acting on a set X, and let x ∈ X. Then the cardinality of the orbit of x under G is equal to the index of the stabilizer of x:
-
- This is known as the orbit-stabilizer theorem.
- As a special case of the orbit-stabilizer theorem, the number of conjugates gxg−1 of an element x ∈ G is equal to the index of the centralizer of x in G.
- Similarly, the number of conjugates gHg−1 of a subgroup H in G is equal to the index of the normalizer of H in G.
- If H is a subgroup of G, the index of the normal core of H satisfies the following inequality:
-
- where ! denotes the factorial function; this is discussed further below.
- As a corollary, if the index of H in G is 2, or for a finite group the lowest prime p that divides the order of G, then H is normal, as the index of its core must also be p, and thus H equals its core, i.e., is normal.
- Note that a subgroup of lowest prime index may not exist, such as in any simple group of non-prime order, or more generally any perfect group.
Read more about this topic: Index Of A Subgroup
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
Related Phrases
Related Words