Properties
- If H is a subgroup of G and K is a subgroup of H, then
- If H and K are subgroups of G, then
-
- with equality if HK = G. (If |G : H ∩ K| is finite, then equality holds if and only if HK = G.)
- Equivalently, if H and K are subgroups of G, then
-
- with equality if HK = G. (If |H : H ∩ K| is finite, then equality holds if and only if HK = G.)
- If G and H are groups and φ: G → H is a homomorphism, then the index of the kernel of φ in G is equal to the order of the image:
- Let G be a group acting on a set X, and let x ∈ X. Then the cardinality of the orbit of x under G is equal to the index of the stabilizer of x:
-
- This is known as the orbit-stabilizer theorem.
- As a special case of the orbit-stabilizer theorem, the number of conjugates gxg−1 of an element x ∈ G is equal to the index of the centralizer of x in G.
- Similarly, the number of conjugates gHg−1 of a subgroup H in G is equal to the index of the normalizer of H in G.
- If H is a subgroup of G, the index of the normal core of H satisfies the following inequality:
-
- where ! denotes the factorial function; this is discussed further below.
- As a corollary, if the index of H in G is 2, or for a finite group the lowest prime p that divides the order of G, then H is normal, as the index of its core must also be p, and thus H equals its core, i.e., is normal.
- Note that a subgroup of lowest prime index may not exist, such as in any simple group of non-prime order, or more generally any perfect group.
Read more about this topic: Index Of A Subgroup
Famous quotes containing the word properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)