Index of A Subgroup - Normal Subgroups of Prime Power Index

Normal Subgroups of Prime Power Index

Normal subgroups of prime power index are kernels of surjective maps to p-groups and have interesting structure, as described at Focal subgroup theorem: Subgroups and elaborated at focal subgroup theorem.

There are three important normal subgroups of prime power index, each being the smallest normal subgroup in a certain class:

  • Ep(G) is the intersection of all index p normal subgroups; G/Ep(G) is an elementary abelian group, and is the largest elementary abelian p-group onto which G surjects.
  • Ap(G) is the intersection of all normal subgroups K such that G/K is an abelian p-group (i.e., K is an index normal subgroup that contains the derived group ): G/Ap(G) is the largest abelian p-group (not necessarily elementary) onto which G surjects.
  • Op(G) is the intersection of all normal subgroups K of G such that G/K is a (possibly non-abelian) p-group (i.e., K is an index normal subgroup): G/Op(G) is the largest p-group (not necessarily abelian) onto which G surjects. Op(G) is also known as the p-residual subgroup.

As these are weaker conditions on the groups K, one obtains the containments

These groups have important connections to the Sylow subgroups and the transfer homomorphism, as discussed there.

Read more about this topic:  Index Of A Subgroup

Famous quotes containing the words normal, prime, power and/or index:

    Our normal waking consciousness, rational consciousness as we call it, is but one special type of consciousness, whilst all about it, parted from it by the filmiest of screens, there lie potential forms of consciousness entirely different.
    William James (1842–1910)

    Weekend planning is a prime time to apply the Deathbed Priority Test: On your deathbed, will you wish you’d spent more prime weekend hours grocery shopping or walking in the woods with your kids?
    Louise Lague (20th century)

    It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.
    René Descartes (1596–1650)

    Exile as a mode of genius no longer exists; in place of Joyce we have the fragments of work appearing in Index on Censorship.
    Nadine Gordimer (b. 1923)