Homogeneous Space

In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts continuously and transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of G be faithful (non-identity elements act non-trivially), although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit.

Read more about Homogeneous Space:  Formal Definition, Geometry, Homogeneous Spaces As Coset Spaces, Example, Prehomogeneous Vector Spaces, Homogeneous Spaces in Physics

Famous quotes containing the words homogeneous and/or space:

    If we Americans are to survive it will have to be because we choose and elect and defend to be first of all Americans; to present to the world one homogeneous and unbroken front, whether of white Americans or black ones or purple or blue or green.... If we in America have reached that point in our desperate culture when we must murder children, no matter for what reason or what color, we don’t deserve to survive, and probably won’t.
    William Faulkner (1897–1962)

    There is commonly sufficient space about us. Our horizon is never quite at our elbows.
    Henry David Thoreau (1817–1862)