In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts continuously and transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of G be faithful (non-identity elements act non-trivially), although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit.
Read more about Homogeneous Space: Formal Definition, Geometry, Homogeneous Spaces As Coset Spaces, Example, Prehomogeneous Vector Spaces, Homogeneous Spaces in Physics
Famous quotes containing the words homogeneous and/or space:
“O my Brothers! love your Country. Our Country is our home, the home which God has given us, placing therein a numerous family which we love and are loved by, and with which we have a more intimate and quicker communion of feeling and thought than with others; a family which by its concentration upon a given spot, and by the homogeneous nature of its elements, is destined for a special kind of activity.”
—Giuseppe Mazzini (18051872)
“Not so many years ago there there was no simpler or more intelligible notion than that of going on a journey. Travelmovement through spaceprovided the universal metaphor for change.... One of the subtle confusionsperhaps one of the secret terrorsof modern life is that we have lost this refuge. No longer do we move through space as we once did.”
—Daniel J. Boorstin (b. 1914)