Homogeneous Space

In mathematics, particularly in the theories of Lie groups, algebraic groups and topological groups, a homogeneous space for a group G is a non-empty manifold or topological space X on which G acts continuously and transitively. The elements of G are called the symmetries of X. A special case of this is when the group G in question is the automorphism group of the space X – here "automorphism group" can mean isometry group, diffeomorphism group, or homeomorphism group. In this case X is homogeneous if intuitively X looks locally the same at each point, either in the sense of isometry (rigid geometry), diffeomorphism (differential geometry), or homeomorphism (topology). Some authors insist that the action of G be faithful (non-identity elements act non-trivially), although the present article does not. Thus there is a group action of G on X which can be thought of as preserving some "geometric structure" on X, and making X into a single G-orbit.

Read more about Homogeneous Space:  Formal Definition, Geometry, Homogeneous Spaces As Coset Spaces, Example, Prehomogeneous Vector Spaces, Homogeneous Spaces in Physics

Famous quotes containing the words homogeneous and/or space:

    O my Brothers! love your Country. Our Country is our home, the home which God has given us, placing therein a numerous family which we love and are loved by, and with which we have a more intimate and quicker communion of feeling and thought than with others; a family which by its concentration upon a given spot, and by the homogeneous nature of its elements, is destined for a special kind of activity.
    Giuseppe Mazzini (1805–1872)

    When my body leaves me
    I’m lonesome for it.
    but body
    goes away to I don’t know where
    and it’s lonesome to drift
    above the space it
    fills when it’s here.
    Denise Levertov (b. 1923)