Homogeneous Space - Formal Definition

Formal Definition

Let X be a non-empty set and G a group. Then X is called a G-space if it is equipped with an action of G on X. Note that automatically G acts by automorphisms (bijections) on the set. If X in addition belongs to some category, then the elements of G are assumed to act as automorphisms in the same category. Thus the maps on X effected by G are structure preserving. A homogeneous space is a G-space on which G acts transitively.

Succinctly, if X is an object of the category C, then the structure of a G-space is a homomorphism:

into the group of automorphisms of the object X in the category C. The pair (X,ρ) defines a homogeneous space provided ρ(G) is a transitive group of symmetries of the underlying set of X.

Read more about this topic:  Homogeneous Space

Famous quotes containing the words formal and/or definition:

    Then the justice,
    In fair round belly with good capon lined,
    With eyes severe and beard of formal cut,
    Full of wise saws and modern instances;
    And so he plays his part.
    William Shakespeare (1564–1616)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)