Homogeneous Spaces As Coset Spaces
In general, if X is a homogeneous space, and Ho is the stabilizer of some marked point o in X (a choice of origin), the points of X correspond to the left cosets G/Ho, and the marked point o corresponds to the coset of the identity. Conversely, given a coset space G/H, it is a homogeneous space for G with a distinguished point, namely the coset of the identity. Thus a homogeneous space can be thought of as a coset space without a choice of origin.
In general, a different choice of origin o will lead to a quotient of G by a different subgroup Ho′ which is related to Ho by an inner automorphism of G. Specifically,
- (1)
where g is any element of G for which go = o′. Note that the inner automorphism (1) does not depend on which such g is selected; it depends only on g modulo Ho.
If the action of G on X is continuous, then H is a closed subgroup of G. In particular, if G is a Lie group, then H is a closed Lie subgroup by Cartan's theorem. Hence G/H is a smooth manifold and so X carries a unique smooth structure compatible with the group action.
If H is the identity subgroup {e}, then X is a principal homogeneous space.
One can go further to double coset spaces, notably Clifford–Klein forms Γ\G/H, where Γ is a discrete subgroup (of G) acting properly discontinuously.
Read more about this topic: Homogeneous Space
Famous quotes containing the words homogeneous and/or spaces:
“O my Brothers! love your Country. Our Country is our home, the home which God has given us, placing therein a numerous family which we love and are loved by, and with which we have a more intimate and quicker communion of feeling and thought than with others; a family which by its concentration upon a given spot, and by the homogeneous nature of its elements, is destined for a special kind of activity.”
—Giuseppe Mazzini (18051872)
“We should read history as little critically as we consider the landscape, and be more interested by the atmospheric tints and various lights and shades which the intervening spaces create than by its groundwork and composition.”
—Henry David Thoreau (18171862)