Holomorphic Function - Extension To Functional Analysis

Extension To Functional Analysis

The concept of a holomorphic function can be extended to the infinite-dimensional spaces of functional analysis. For instance, the Fréchet or Gâteaux derivative can be used to define a notion of a holomorphic function on a Banach space over the field of complex numbers.

Read more about this topic:  Holomorphic Function

Famous quotes containing the words extension, functional and/or analysis:

    ‘Tis the perception of the beautiful,
    A fine extension of the faculties,
    Platonic, universal, wonderful,
    Drawn from the stars, and filtered through the skies,
    Without which life would be extremely dull.
    George Gordon Noel Byron (1788–1824)

    Indigenous to Minnesota, and almost completely ignored by its people, are the stark, unornamented, functional clusters of concrete—Minnesota’s grain elevators. These may be said to express unconsciously all the principles of modernism, being built for use only, with little regard for the tenets of esthetic design.
    —Federal Writers’ Project Of The Wor, U.S. public relief program (1935-1943)

    A commodity appears at first sight an extremely obvious, trivial thing. But its analysis brings out that it is a very strange thing, abounding in metaphysical subtleties and theological niceties.
    Karl Marx (1818–1883)