Holomorphic Function - Extension To Functional Analysis

Extension To Functional Analysis

The concept of a holomorphic function can be extended to the infinite-dimensional spaces of functional analysis. For instance, the Fréchet or Gâteaux derivative can be used to define a notion of a holomorphic function on a Banach space over the field of complex numbers.

Read more about this topic:  Holomorphic Function

Famous quotes containing the words extension, functional and/or analysis:

    We are now a nation of people in daily contact with strangers. Thanks to mass transportation, school administrators and teachers often live many miles from the neighborhood schoolhouse. They are no longer in daily informal contact with parents, ministers, and other institution leaders . . . [and are] no longer a natural extension of parental authority.
    James P. Comer (20th century)

    In short, the building becomes a theatrical demonstration of its functional ideal. In this romanticism, High-Tech architecture is, of course, no different in spirit—if totally different in form—from all the romantic architecture of the past.
    Dan Cruickshank (b. 1949)

    Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.
    Joan Didion (b. 1934)