Statement of The Equation
For a function u(x,y,z,t) of three spatial variables (x,y,z) (see cartesian coordinates) and the time variable t, the heat equation is
More generally in any coordinate system:
where α is a positive constant, and Δ or ∇2 denotes the Laplace operator. In the physical problem of temperature variation, u(x,y,z,t) is the temperature and α is the thermal diffusivity. For the mathematical treatment it is sufficient to consider the case α = 1.
The heat equation is of fundamental importance in diverse scientific fields. In mathematics, it is the prototypical parabolic partial differential equation. In probability theory, the heat equation is connected with the study of Brownian motion via the Fokker–Planck equation. In financial mathematics it is used to solve the Black–Scholes partial differential equation. The diffusion equation, a more general version of the heat equation, arises in connection with the study of chemical diffusion and other related processes.
Read more about this topic: Heat Equation
Famous quotes containing the words statement of the, statement of, statement and/or equation:
“It is commonplace that a problem stated is well on its way to solution, for statement of the nature of a problem signifies that the underlying quality is being transformed into determinate distinctions of terms and relations or has become an object of articulate thought.”
—John Dewey (18591952)
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)
“A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.”
—Norman Mailer (b. 1923)