Heat Equation - Statement of The Equation

Statement of The Equation

For a function u(x,y,z,t) of three spatial variables (x,y,z) (see cartesian coordinates) and the time variable t, the heat equation is

More generally in any coordinate system:

where α is a positive constant, and Δ or ∇2 denotes the Laplace operator. In the physical problem of temperature variation, u(x,y,z,t) is the temperature and α is the thermal diffusivity. For the mathematical treatment it is sufficient to consider the case α = 1.

The heat equation is of fundamental importance in diverse scientific fields. In mathematics, it is the prototypical parabolic partial differential equation. In probability theory, the heat equation is connected with the study of Brownian motion via the Fokker–Planck equation. In financial mathematics it is used to solve the Black–Scholes partial differential equation. The diffusion equation, a more general version of the heat equation, arises in connection with the study of chemical diffusion and other related processes.

Read more about this topic:  Heat Equation

Famous quotes containing the words statement of, statement and/or equation:

    The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.
    Andrew Jackson (1767–1845)

    The honor my country shall never be stained by an apology from me for the statement of truth and the performance of duty; nor can I give any explanation of my official acts except such as is due to integrity and justice and consistent with the principles on which our institutions have been framed.
    Andrew Jackson (1767–1845)

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)