In mathematics, a fundamental solution for a linear partial differential operator L is a formulation in the language of distribution theory of the older idea of a Green's function. In terms of the Dirac delta function δ(x), a fundamental solution F is the solution of the inhomogeneous equation
- LF = δ(x).
Here F is a priori only assumed to be a Schwartz distribution.
This concept was long known for the Laplacian in two and three dimensions. It was investigated for all dimensions for the Laplacian by Marcel Riesz. The existence of a fundamental solution for any operator with constant coefficients — the most important case, directly linked to the possibility of using convolution to solve an arbitrary right hand side — was shown by Malgrange and Leon Ehrenpreis.
Read more about Fundamental Solution: Example, Motivation, Signal Processing
Famous quotes containing the words fundamental and/or solution:
“There can be a fundamental gulf of gracelessness in a human heart which neither our love nor our courage can bridge.”
—Patrick, Mrs. Campbell (18651940)
“Any solution to a problem changes the problem.”
—R.W. (Richard William)