Fundamental Solution

In mathematics, a fundamental solution for a linear partial differential operator L is a formulation in the language of distribution theory of the older idea of a Green's function. In terms of the Dirac delta function δ(x), a fundamental solution F is the solution of the inhomogeneous equation

LF = δ(x).

Here F is a priori only assumed to be a Schwartz distribution.

This concept was long known for the Laplacian in two and three dimensions. It was investigated for all dimensions for the Laplacian by Marcel Riesz. The existence of a fundamental solution for any operator with constant coefficients — the most important case, directly linked to the possibility of using convolution to solve an arbitrary right hand side — was shown by Malgrange and Leon Ehrenpreis.

Read more about Fundamental Solution:  Example, Motivation, Signal Processing

Famous quotes containing the words fundamental and/or solution:

    Each [side in this war] looked for an easier triumph, and a result less fundamental and astounding. Both read the same Bible, and pray to the same God; and each invokes His aid against the other. It may seem strange that any men should dare to ask a just God’s assistance in wringing their bread from the sweat of other men’s faces; but let us judge not that we be not judged.
    Abraham Lincoln (1809–1865)

    I herewith commission you to carry out all preparations with regard to ... a total solution of the Jewish question in those territories of Europe which are under German influence.... I furthermore charge you to submit to me as soon as possible a draft showing the ... measures already taken for the execution of the intended final solution of the Jewish question.
    Hermann Goering (1893–1946)