Green's Function

In mathematics, a Green's function is a type of function used to solve inhomogeneous differential equations subject to specific initial conditions or boundary conditions. Under many-body theory, the term is also used in physics, specifically in quantum field theory, aerodynamics, aeroacoustics, electrodynamics and statistical field theory, to refer to various types of correlation functions, even those that do not fit the mathematical definition.

Green's functions are named after the British mathematician George Green, who first developed the concept in the 1830s. In the modern study of linear partial differential equations, Green's functions are studied largely from the point of view of fundamental solutions instead.

Read more about Green's Function:  Definition and Uses, Motivation, Green's Functions For Solving Inhomogeneous Boundary Value Problems, Green's Functions For The Laplacian, Example, Further Examples

Famous quotes containing the words green and/or function:

    We mustn’t touch them yet, but see and see!
    And what was green would by and by be gold.
    Their name was called the Gold Hesperidee.
    Robert Frost (1874–1963)

    As a medium of exchange,... worrying regulates intimacy, and it is often an appropriate response to ordinary demands that begin to feel excessive. But from a modernized Freudian view, worrying—as a reflex response to demand—never puts the self or the objects of its interest into question, and that is precisely its function in psychic life. It domesticates self-doubt.
    Adam Phillips, British child psychoanalyst. “Worrying and Its Discontents,” in On Kissing, Tickling, and Being Bored, p. 58, Harvard University Press (1993)