Partial Flag Varieties
The partial flag variety
is the space of all flags of signature (d1, d2, … dk) in a vector space V of dimension n = dk over F. The complete flag variety is the special case that di = i for all i. When k=2, this is a Grassmannian of d1-dimensional subspaces of V.
This is a homogeneous space for the general linear group G of V over F. To be explicit, take V = Fn so that G = GL(n,F). The stabilizer of a flag of nested subspaces Vi of dimension di can be taken to be the group of nonsingular block upper triangular matrices, where the dimensions of the blocks are ni := di − di−1 (with d0 = 0).
Restricting to matrices of determinant one, this is a parabolic subgroup P of SL(n,F), and thus the partial flag variety is isomorphic to the homogeneous space SL(n,F)/P.
If F is the real or complex numbers, then an inner product can be used to split any flag into a direct sum, and so the partial flag variety is also isomorphic to the homogeneous space
in the complex case, or
in the real case.
Read more about this topic: Generalized Flag Variety
Famous quotes containing the words partial, flag and/or varieties:
“You must not be partial in judging: hear out the small and the great alike; you shall not be intimidated by anyone, for the judgment is Gods.”
—Bible: Hebrew, Deuteronomy 1:17.
“Hath not the morning dawned with added light?
And shall not evening call another star
Out of the infinite regions of the night,
To mark this day in Heaven? At last, we are
A nation among nations; and the world
Shall soon behold in many a distant port
Another flag unfurled!”
—Henry Timrod (18281867)
“Now there are varieties of gifts, but the same Spirit; and there are varieties of services, but the same Lord; and there are varieties of activities, but it is the same God who activates all of them in everyone.”
—Bible: New Testament, 1 Corinthians 12:4-6.