Properties of Gauss Sums of Dirichlet Characters
The Gauss sum of a Dirichlet character modulo N is
If χ is moreover primitive, then
in particular, it is non-zero. More generally, if N0 is the conductor of χ and χ0 is the primitive Dirichlet character modulo N0 that induces χ, then the Gauss sum of χ is related to that of χ0 by
where μ is the Möbius function. Consequently, G(χ) is non-zero precisely when N/N0 is squarefree and relatively prime to N0. Other relations between G(χ) and Gauss sums of other characters include
where χ is the complex conjugate Dirichlet character, and if χ′ is a Dirichlet character modulo N′ such that N and N′ are relatively prime, then
The relation among G(χχ′), G(χ), and G(χ′) when χ and χ′ are of the same modulus (and χχ′ is primitive) is measured by the Jacobi sum J(χ, χ′). Specifically,
Read more about this topic: Gauss Sum
Famous quotes containing the words properties of, properties, sums and/or characters:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“At Timons villalet us pass a day,
Where all cry out,What sums are thrown away!”
—Alexander Pope (16881744)
“Though they be mad and dead as nails,
Heads of the characters hammer through daisies;
Break in the sun till the sun breaks down,
And death shall have no dominion.”
—Dylan Thomas (19141953)