Gauss Sum - Properties of Gauss Sums of Dirichlet Characters

Properties of Gauss Sums of Dirichlet Characters

The Gauss sum of a Dirichlet character modulo N is

If χ is moreover primitive, then

in particular, it is non-zero. More generally, if N0 is the conductor of χ and χ0 is the primitive Dirichlet character modulo N0 that induces χ, then the Gauss sum of χ is related to that of χ0 by

where μ is the Möbius function. Consequently, G(χ) is non-zero precisely when N/N0 is squarefree and relatively prime to N0. Other relations between G(χ) and Gauss sums of other characters include

where χ is the complex conjugate Dirichlet character, and if χ′ is a Dirichlet character modulo N′ such that N and N′ are relatively prime, then

The relation among G(χχ′), G(χ), and G(χ′) when χ and χ′ are of the same modulus (and χχ′ is primitive) is measured by the Jacobi sum J(χ, χ′). Specifically,

Read more about this topic:  Gauss Sum

Famous quotes containing the words properties of, properties, sums and/or characters:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)

    If God lived on earth, people would break his windows.
    Jewish proverb, quoted in Claud Cockburn, Cockburn Sums Up, epigraph (1981)

    White Pond and Walden are great crystals on the surface of the earth, Lakes of Light.... They are too pure to have a market value; they contain no muck. How much more beautiful than our lives, how much more transparent than our characters are they! We never learned meanness of them.
    Henry David Thoreau (1817–1862)