Solvable Groups and Solution By Radicals
The notion of a solvable group in group theory allows one to determine whether a polynomial is solvable in radicals, depending on whether its Galois group has the property of solvability. In essence, each field extension L/K corresponds to a factor group in a composition series of the Galois group. If a factor group in the composition series is cyclic of order n, and if in the corresponding field extension L/K the field K already contains a primitive n-th root of unity, then it is a radical extension and the elements of L can then be expressed using the nth root of some element of K.
If all the factor groups in its composition series are cyclic, the Galois group is called solvable, and all of the elements of the corresponding field can be found by repeatedly taking roots, products, and sums of elements from the base field (usually Q).
One of the great triumphs of Galois Theory was the proof that for every n > 4, there exist polynomials of degree n which are not solvable by radicals—the Abel–Ruffini theorem. This is due to the fact that for n > 4 the symmetric group Sn contains a simple, non-cyclic, normal subgroup, namely An.
Read more about this topic: Galois Theory
Famous quotes containing the words solvable, groups, solution and/or radicals:
“The problems of the world, AIDS, cancer, nuclear war, pollution, are, finally, no more solvable than the problem of a tree which has borne fruit: the apples are overripe and they are fallingwhat can be done?... Nothing can be done, and nothing needs to be done. Something is being donethe organism is preparing to rest.”
—David Mamet (b. 1947)
“Some of the greatest and most lasting effects of genuine oratory have gone forth from secluded lecture desks into the hearts of quiet groups of students.”
—Woodrow Wilson (18561924)
“The Settlement ... is an experimental effort to aid in the solution of the social and industrial problems which are engendered by the modern conditions of life in a great city. It insists that these problems are not confined to any one portion of the city. It is an attempt to relieve, at the same time, the overaccumulation at one end of society and the destitution at the other ...”
—Jane Addams (18601935)
“Generally young men are regarded as radicals. This is a popular misconception. The most conservative persons I ever met are college undergraduates. The radicals are the men past middle life.”
—Woodrow Wilson (18561924)