Function Field (scheme Theory)

Function Field (scheme Theory)

The sheaf of rational functions KX of a scheme X is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of varieties, such a sheaf associates to each open set U the ring of all rational functions on that open set; in other words, KX(U) is the set of fractions of regular functions on U. Despite its name, KX does not always give a field for a general scheme X.

Read more about Function Field (scheme Theory):  Simple Cases, General Case, Further Issues, Bibliography

Famous quotes containing the words function and/or field:

    Nobody seriously questions the principle that it is the function of mass culture to maintain public morale, and certainly nobody in the mass audience objects to having his morale maintained.
    Robert Warshow (1917–1955)

    The frequent failure of men to cultivate their capacity for listening has a profound impact on their capacity for parenting, for it is mothers more than fathers who are most likely to still their own voices so they may hear and draw out the voices of their children.
    —Mary Field Belenky (20th century)