Function Field (scheme Theory)
The sheaf of rational functions KX of a scheme X is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of varieties, such a sheaf associates to each open set U the ring of all rational functions on that open set; in other words, KX(U) is the set of fractions of regular functions on U. Despite its name, KX does not always give a field for a general scheme X.
Read more about Function Field (scheme Theory): Simple Cases, General Case, Further Issues, Bibliography
Famous quotes containing the words function and/or field:
“Advocating the mere tolerance of difference between women is the grossest reformism. It is a total denial of the creative function of difference in our lives. Difference must be not merely tolerated, but seen as a fund of necessary polarities between which our creativity can spark like a dialectic.”
—Audre Lorde (19341992)
“The birds their quire apply; airs, vernal airs,
Breathing the smell of field and grove, attune
The trembling leaves, while universal Pan,
Knit with the Graces and the Hours in dance,
Led on th eternal Spring.”
—John Milton (16081674)