Function Field (scheme Theory) - Further Issues

Further Issues

Once KX is defined, it is possible to study properties of X which depend only on KX. This is the subject of birational geometry.

If X is an algebraic variety over a field k, then over each open set U we have a field extension KX(U) of k. The dimension of U will be equal to the transcendence degree of this field extension. All finite transcendence degree field extensions of k correspond to the rational function field of some variety.

In the particular case of an algebraic curve C, that is, dimension 1, it follows that any two non-constant functions F and G on C satisfy a polynomial equation P(F,G) = 0.

Read more about this topic:  Function Field (scheme Theory)

Famous quotes containing the word issues:

    How to attain sufficient clarity of thought to meet the terrifying issues now facing us, before it is too late, is ... important. Of one thing I feel reasonably sure: we can’t stop to discuss whether the table has or hasn’t legs when the house is burning down over our heads. Nor do the classics per se seem to furnish the kind of education which fits people to cope with a fast-changing civilization.
    Mary Barnett Gilson (1877–?)

    Cynicism formulates issues clearly, but only to dismiss them.
    Mason Cooley (b. 1927)