Function Composition - Functional Powers

Functional Powers

If then may compose with itself; this is sometimes denoted . Thus:

Repeated composition of a function with itself is called function iteration.

The functional powers for natural follow immediately.

  • By convention, the identity map on the domain of .
  • If admits an inverse function, negative functional powers are defined as the opposite power of the inverse function, .

Note: If f takes its values in a ring (in particular for real or complex-valued f ), there is a risk of confusion, as f n could also stand for the n-fold product of f, e.g. f 2(x) = f(x) · f(x).

(For trigonometric functions, usually the latter is meant, at least for positive exponents. For example, in trigonometry, this superscript notation represents standard exponentiation when used with trigonometric functions: sin2(x) = sin(x) · sin(x). However, for negative exponents (especially −1), it nevertheless usually refers to the inverse function, e.g., tan−1 = arctan (≠ 1/tan).

In some cases, an expression for f in g(x) = f r(x) can be derived from the rule for g given non-integer values of r. This is called fractional iteration. For instance, a half iterate of a function f is a function g satisfying g(g(x)) = f(x). Another example would be that where f is the successor function, f r(x) = x + r. This idea can be generalized so that the iteration count becomes a continuous parameter; in this case, such a system is called a flow.

Iterated functions and flows occur naturally in the study of fractals and dynamical systems.

Read more about this topic:  Function Composition

Famous quotes containing the words functional and/or powers:

    Indigenous to Minnesota, and almost completely ignored by its people, are the stark, unornamented, functional clusters of concrete—Minnesota’s grain elevators. These may be said to express unconsciously all the principles of modernism, being built for use only, with little regard for the tenets of esthetic design.
    —Federal Writers’ Project Of The Wor, U.S. public relief program (1935-1943)

    Everyone confesses in the abstract that exertion which brings out all the powers of body and mind is the best thing for us all; but practically most people do all they can to get rid of it, and as a general rule nobody does much more than circumstances drive them to do.
    Harriet Beecher Stowe (1811–1896)