Elementary Group Theory

Elementary Group Theory

In mathematics and abstract algebra, a group is the algebraic structure, where is a non-empty set and denotes a binary operation called the group operation. The notation is normally shortened to the infix notation, or even to .

A group must obey the following rules (or axioms). Let be arbitrary elements of . Then:

  • A1, Closure. . This axiom is often omitted because a binary operation is closed by definition.
  • A2, Associativity. .
  • A3, Identity. There exists an identity (or neutral) element such that . The identity of is unique by Theorem 1.4 below.
  • A4, Inverse. For each, there exists an inverse element such that . The inverse of is unique by Theorem 1.5 below.

An abelian group also obeys the additional rule:

  • A5, Commutativity. .

Read more about Elementary Group Theory:  Notation, Alternative Axioms, Subgroups, Cosets

Famous quotes containing the words elementary, group and/or theory:

    If men as individuals surrender to the call of their elementary instincts, avoiding pain and seeking satisfaction only for their own selves, the result for them all taken together must be a state of insecurity, of fear, and of promiscuous misery.
    Albert Einstein (1879–1955)

    There is nothing in the world that I loathe more than group activity, that communal bath where the hairy and slippery mix in a multiplication of mediocrity.
    Vladimir Nabokov (1899–1977)

    The things that will destroy America are prosperity-at-any- price, peace-at-any-price, safety-first instead of duty-first, the love of soft living, and the get-rich-quick theory of life.
    Theodore Roosevelt (1858–1919)