Elementary Group Theory
In mathematics and abstract algebra, a group is the algebraic structure, where is a non-empty set and denotes a binary operation called the group operation. The notation is normally shortened to the infix notation, or even to .
A group must obey the following rules (or axioms). Let be arbitrary elements of . Then:
- A1, Closure. . This axiom is often omitted because a binary operation is closed by definition.
- A2, Associativity. .
- A3, Identity. There exists an identity (or neutral) element such that . The identity of is unique by Theorem 1.4 below.
- A4, Inverse. For each, there exists an inverse element such that . The inverse of is unique by Theorem 1.5 below.
An abelian group also obeys the additional rule:
- A5, Commutativity. .
Read more about Elementary Group Theory: Notation, Alternative Axioms, Subgroups, Cosets
Famous quotes containing the words elementary, group and/or theory:
“When the Devil quotes Scriptures, its not, really, to deceive, but simply that the masses are so ignorant of theology that somebody has to teach them the elementary texts before he can seduce them.”
—Paul Goodman (19111972)
“The government of the United States at present is a foster-child of the special interests. It is not allowed to have a voice of its own. It is told at every move, Dont do that, You will interfere with our prosperity. And when we ask: where is our prosperity lodged? a certain group of gentlemen say, With us.”
—Woodrow Wilson (18561924)
“... the first reason for psychologys failure to understand what people are and how they act, is that clinicians and psychiatrists, who are generally the theoreticians on these matters, have essentially made up myths without any evidence to support them; the second reason for psychologys failure is that personality theory has looked for inner traits when it should have been looking for social context.”
—Naomi Weisstein (b. 1939)