In mathematics, an inverse function is a function that undoes another function: If an input x into the function ƒ produces an output y, then putting y into the inverse function g produces the output x, and vice versa. i.e., ƒ(x)=y, and g(y)=x. More directly, g(ƒ(x))=x, meaning g(x) composed with ƒ(x) leaves x unchanged.
A function ƒ that has an inverse is called invertible; the inverse function is then uniquely determined by ƒ and is denoted by ƒ−1 (read f inverse, not to be confused with exponentiation).
Read more about Inverse Function: Definitions, Inverses in Calculus, Real-world Examples
Famous quotes containing the words inverse and/or function:
“The quality of moral behaviour varies in inverse ratio to the number of human beings involved.”
—Aldous Huxley (18941963)
“The function of muscle is to pull and not to push, except in the case of the genitals and the tongue.”
—Leonardo Da Vinci (14251519)