In mathematics, an inverse function is a function that undoes another function: If an input x into the function ƒ produces an output y, then putting y into the inverse function g produces the output x, and vice versa. i.e., ƒ(x)=y, and g(y)=x. More directly, g(ƒ(x))=x, meaning g(x) composed with ƒ(x) leaves x unchanged.
A function ƒ that has an inverse is called invertible; the inverse function is then uniquely determined by ƒ and is denoted by ƒ−1 (read f inverse, not to be confused with exponentiation).
Read more about Inverse Function: Definitions, Inverses in Calculus, Real-world Examples
Famous quotes containing the words inverse and/or function:
“The quality of moral behaviour varies in inverse ratio to the number of human beings involved.”
—Aldous Huxley (18941963)
“The information links are like nerves that pervade and help to animate the human organism. The sensors and monitors are analogous to the human senses that put us in touch with the world. Data bases correspond to memory; the information processors perform the function of human reasoning and comprehension. Once the postmodern infrastructure is reasonably integrated, it will greatly exceed human intelligence in reach, acuity, capacity, and precision.”
—Albert Borgman, U.S. educator, author. Crossing the Postmodern Divide, ch. 4, University of Chicago Press (1992)