Fourier Transform - Other Conventions

Other Conventions

The Fourier transform can also be written in terms of angular frequency: ω = 2πξ whose units are radians per second.

The substitution ξ = ω/(2π) into the formulas above produces this convention:

Under this convention, the inverse transform becomes:

Unlike the convention followed in this article, when the Fourier transform is defined this way, it is no longer a unitary transformation on L2(Rn). There is also less symmetry between the formulas for the Fourier transform and its inverse.

Another convention is to split the factor of (2π)n evenly between the Fourier transform and its inverse, which leads to definitions:

Under this convention, the Fourier transform is again a unitary transformation on L2(Rn). It also restores the symmetry between the Fourier transform and its inverse.

Variations of all three conventions can be created by conjugating the complex-exponential kernel of both the forward and the reverse transform. The signs must be opposites. Other than that, the choice is (again) a matter of convention.

Summary of popular forms of the Fourier transform
ordinary frequency ξ (hertz) unitary

angular frequency ω (rad/s) non-unitary

unitary

As discussed above, the characteristic function of a random variable is the same as the Fourier–Stieltjes transform of its distribution measure, but in this context it is typical to take a different convention for the constants. Typically characteristic function is defined .

As in the case of the "non-unitary angular frequency" convention above, there is no factor of 2π appearing in either of the integral, or in the exponential. Unlike any of the conventions appearing above, this convention takes the opposite sign in the exponential.

Read more about this topic:  Fourier Transform

Famous quotes containing the word conventions:

    I find nothing healthful or exalting in the smooth conventions of society. I do not like the close air of saloons. I begin to suspect myself to be a prisoner, though treated with all this courtesy and luxury. I pay a destructive tax in my conformity.
    Ralph Waldo Emerson (1803–1882)

    Why does almost everything seem to me like its own parody? Why must I think that almost all, no, all the methods and conventions of art today are good for parody only?
    Thomas Mann (1875–1955)