The Laplace transform is a widely used integral transform with many applications in physics and engineering. Denoted, it is a linear operator of a function f(t) with a real argument t (t ≥ 0) that transforms it to a function F(s) with a complex argument s. This transformation is essentially bijective for the majority of practical uses; the respective pairs of f(t) and F(s) are matched in tables. The Laplace transform has the useful property that many relationships and operations over the originals f(t) correspond to simpler relationships and operations over the images F(s). It is named after Pierre-Simon Laplace, who introduced the transform in his work on probability theory.
The Laplace transform is related to the Fourier transform, but whereas the Fourier transform expresses a function or signal as a series of modes of vibration (frequencies), the Laplace transform resolves a function into its moments. Like the Fourier transform, the Laplace transform is used for solving differential and integral equations. In physics and engineering it is used for analysis of linear time-invariant systems such as electrical circuits, harmonic oscillators, optical devices, and mechanical systems. In such analyses, the Laplace transform is often interpreted as a transformation from the time-domain, in which inputs and outputs are functions of time, to the frequency-domain, where the same inputs and outputs are functions of complex angular frequency, in radians per unit time. Given a simple mathematical or functional description of an input or output to a system, the Laplace transform provides an alternative functional description that often simplifies the process of analyzing the behavior of the system, or in synthesizing a new system based on a set of specifications.
Read more about Laplace Transform: History, Formal Definition, Region of Convergence, Properties and Theorems, Table of Selected Laplace Transforms, S-Domain Equivalent Circuits and Impedances, Examples: How To Apply The Properties and Theorems
Famous quotes containing the words laplace and/or transform:
“Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective positions of the beings which compose it, if moreover this intelligence were vast enough to submit these data to analysis, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes.”
—Pierre Simon De Laplace (17491827)
“The inspired scribbler always has the gift for gossip in our common usage ... he or she can always inspire the commonplace with an uncommon flavor, and transform trivialities by some original grace or sympathy or humor or affection.”
—Elizabeth Drew (18871965)