Fourier Analysis

In mathematics, Fourier analysis is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat propagation.

Today, the subject of Fourier analysis encompasses a vast spectrum of mathematics. In the sciences and engineering, the process of decomposing a function into simpler pieces is often called Fourier analysis, while the operation of rebuilding the function from these pieces is known as Fourier synthesis. In mathematics, the term Fourier analysis often refers to the study of both operations.

The decomposition process itself is called a Fourier transform. The transform is often given a more specific name which depends upon the domain and other properties of the function being transformed. Moreover, the original concept of Fourier analysis has been extended over time to apply to more and more abstract and general situations, and the general field is often known as harmonic analysis. Each transform used for analysis (see list of Fourier-related transforms) has a corresponding inverse transform that can be used for synthesis.

Read more about Fourier Analysis:  Applications, History, Interpretation in Terms of Time and Frequency

Famous quotes containing the word analysis:

    A commodity appears at first sight an extremely obvious, trivial thing. But its analysis brings out that it is a very strange thing, abounding in metaphysical subtleties and theological niceties.
    Karl Marx (1818–1883)