Error Function

In mathematics, the error function (also called the Gauss error function) is a special function (non-elementary) of sigmoid shape which occurs in probability, statistics and partial differential equations. It is defined as:

The complementary error function, denoted erfc, is defined as

\begin{align} \operatorname{erfc}(x) & = 1-\operatorname{erf}(x) \\ & = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt. \end{align}

The imaginary error function, denoted erfi, is defined as

When the error function is evaluated for arbitrary complex arguments z, the resulting complex error function is usually discussed in scaled form as the Faddeeva function:

Read more about Error Function:  The Name "error Function", Properties, Approximation With Elementary Functions, Applications, Related Functions, Implementations, Table of Values

Famous quotes containing the words error and/or function:

    Men have an extraordinarily erroneous opinion of their position in nature; and the error is ineradicable.
    W. Somerset Maugham (1874–1966)

    The intension of a proposition comprises whatever the proposition entails: and it includes nothing else.... The connotation or intension of a function comprises all that attribution of this predicate to anything entails as also predicable to that thing.
    Clarence Lewis (1883–1964)