Approximation With Elementary Functions
Abramowitz and Stegun give several approximations of varying accuracy (equations 7.1.25–28). This allows one to choose the fastest approximation suitable for a given application. In order of increasing accuracy, they are:
- (maximum error: 5·10−4)
where a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108
- (maximum error: 2.5·10−5)
where p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556
- (maximum error: 3·10−7)
where a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638
- (maximum error: 1.5·10−7)
where p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429
All of these approximations are valid for x ≥ 0. To use these approximations for negative x, use the fact that erf(x) is an odd function, so erf(x) = −erf(−x).
Another approximation is given by
where
This is designed to be very accurate in a neighborhood of 0 and a neighborhood of infinity, and the error is less than 0.00035 for all x. Using the alternate value a ≈ 0.147 reduces the maximum error to about 0.00012.
This approximation can also be inverted to calculate the inverse error function:
Read more about this topic: Error Function
Famous quotes containing the words elementary and/or functions:
“Listen. We converse as we liveby repeating, by combining and recombining a few elements over and over again just as nature does when of elementary particles it builds a world.”
—William Gass (b. 1924)
“One of the most highly valued functions of used parents these days is to be the villains of their childrens lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.”
—Frank Pittman (20th century)