Error Function - Related Functions

Related Functions

The error function is essentially identical to the standard normal cumulative distribution function, denoted Φ, also named norm(x) by software languages, as they differ only by scaling and translation. Indeed,

or rearranged for erf and erfc:

\begin{align}
\mathrm{erf}(x) &= 2 \Phi \left ( x \sqrt{2} \right ) - 1 \\
\mathrm{erfc}(x) &= 2 \Phi \left ( - x \sqrt{2} \right )=2(1-\Phi \left ( x \sqrt{2} \right )).
\end{align}

Consequently, the error function is also closely related to the Q-function, which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function as


Q(x) =\tfrac{1}{2} - \tfrac{1}{2} \operatorname{erf} \Bigl( \frac{x}{\sqrt{2}} \Bigr)=\tfrac{1}{2}\operatorname{erfc}(\frac{x}{\sqrt{2}}).

The inverse of is known as the normal quantile function, or probit function and may be expressed in terms of the inverse error function as


\operatorname{probit}(p) = \Phi^{-1}(p) = \sqrt{2}\,\operatorname{erf}^{-1}(2p-1) = -\sqrt{2}\,\operatorname{erfc}^{-1}(2p).

The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics.

The error function is a special case of the Mittag-Leffler function, and can also be expressed as a confluent hypergeometric function (Kummer's function):

\mathrm{erf}(x)=
\frac{2x}{\sqrt{\pi}}\,_1F_1\left(\tfrac12,\tfrac32,-x^2\right).

It has a simple expression in terms of the Fresnel integral.

In terms of the Regularized Gamma function P and the incomplete gamma function,

is the sign function.

Read more about this topic:  Error Function

Famous quotes containing the words related and/or functions:

    The question of place and climate is most closely related to the question of nutrition. Nobody is free to live everywhere; and whoever has to solve great problems that challenge all his strength actually has a very restricted choice in this matter. The influence of climate on our metabolism, its retardation, its acceleration, goes so far that a mistaken choice of place and climate can not only estrange a man from his task but can actually keep it from him: he never gets to see it.
    Friedrich Nietzsche (1844–1900)

    One of the most highly valued functions of used parents these days is to be the villains of their children’s lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents’ failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.
    Frank Pittman (20th century)