Entire Function - Order and Growth

Order and Growth

The order (at infinity) of an entire function f(z) is defined using the limit superior as:

where Br is the disk of radius r and denotes the supremum norm of f(z) on Br. If 0<ρ<∞, one can also define the type:

In other words, the order of f(z) is the infimum of all m such that f(z) = O(exp(|z|m)) as z → ∞. The order need not be finite.

Entire functions may grow as fast as any increasing function: for any increasing function g: [0,∞) → R there exists an entire function f(z) such that f(x)>g(|x|) for all real x. Such a function f may be easily found of the form:

,

for a conveniently chosen strictly increasing sequence of positive integers nk. Any such sequence defines an entire series f(z); and if it is conveniently chosen, the inequality f(x)>g(|x|) also holds, for all real x.

Read more about this topic:  Entire Function

Famous quotes containing the words order and, order and/or growth:

    The herd of mankind can hardly be said to think; their notions are almost all adoptive; and, in general, I believe it is better that it should be so; as such common prejudices contribute more to order and quiet, than their own separate reasonings would do, uncultivated and unimproved as they are.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    What verse is for the poet, dialectical thinking is for the philosopher. He grasps for it in order to get hold of his own enchantment, in order to perpetuate it.
    Friedrich Nietzsche (1844–1900)

    The wind of change is blowing through the continent. Whether we like it or not, this growth of national consciousness is a political fact.
    Harold MacMillan (1894–1986)