Order and Growth
The order (at infinity) of an entire function f(z) is defined using the limit superior as:
where Br is the disk of radius r and denotes the supremum norm of f(z) on Br. If 0<ρ<∞, one can also define the type:
In other words, the order of f(z) is the infimum of all m such that f(z) = O(exp(|z|m)) as z → ∞. The order need not be finite.
Entire functions may grow as fast as any increasing function: for any increasing function g: [0,∞) → R there exists an entire function f(z) such that f(x)>g(|x|) for all real x. Such a function f may be easily found of the form:
- ,
for a conveniently chosen strictly increasing sequence of positive integers nk. Any such sequence defines an entire series f(z); and if it is conveniently chosen, the inequality f(x)>g(|x|) also holds, for all real x.
Read more about this topic: Entire Function
Famous quotes containing the words order and, order and/or growth:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“When I behold a rich landscape, it is less to my purpose to recite correctly the order and superposition of the strata, than to know why all thought of multitude is lost in a tranquil sense of unity.”
—Ralph Waldo Emerson (18031882)
“But parents can be understanding and accept the more difficult stages as necessary times of growth for the child. Parents can appreciate the fact that these phases are not easy for the child to live through either; rapid growth times are hard on a child. Perhaps its a small comfort to know that the harder-to-live-with stages do alternate with the calmer times,so parents can count on getting periodic breaks.”
—Saf Lerman (20th century)