Entire Function - Order and Growth

Order and Growth

The order (at infinity) of an entire function f(z) is defined using the limit superior as:

where Br is the disk of radius r and denotes the supremum norm of f(z) on Br. If 0<ρ<∞, one can also define the type:

In other words, the order of f(z) is the infimum of all m such that f(z) = O(exp(|z|m)) as z → ∞. The order need not be finite.

Entire functions may grow as fast as any increasing function: for any increasing function g: [0,∞) → R there exists an entire function f(z) such that f(x)>g(|x|) for all real x. Such a function f may be easily found of the form:

,

for a conveniently chosen strictly increasing sequence of positive integers nk. Any such sequence defines an entire series f(z); and if it is conveniently chosen, the inequality f(x)>g(|x|) also holds, for all real x.

Read more about this topic:  Entire Function

Famous quotes containing the words order and/or growth:

    Do we have to talk in order to agree or agree in order to talk?
    José Bergamín (1895–1983)

    I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.
    Thomas Henry Huxley (1825–95)