Entire Function

In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic over the whole complex plane. Typical examples of entire functions are the polynomials and the exponential function, and any sums, products and compositions of these, including the error function and the trigonometric functions sine and cosine and their hyperbolic counterparts the hyperbolic sine and hyperbolic cosine functions. Neither the natural logarithm nor the square root functions can be continued analytically to an entire function.

A transcendental entire function is an entire function that is not a polynomial (see transcendental function).

Read more about Entire Function:  Properties, Order and Growth, Other Examples

Famous quotes containing the words entire and/or function:

    Authors communicate with the people by some special extrinsic mark; I am the first to do so by my entire being, as Michel de Montaigne.
    Michel de Montaigne (1533–1592)

    As a medium of exchange,... worrying regulates intimacy, and it is often an appropriate response to ordinary demands that begin to feel excessive. But from a modernized Freudian view, worrying—as a reflex response to demand—never puts the self or the objects of its interest into question, and that is precisely its function in psychic life. It domesticates self-doubt.
    Adam Phillips, British child psychoanalyst. “Worrying and Its Discontents,” in On Kissing, Tickling, and Being Bored, p. 58, Harvard University Press (1993)