In complex analysis, an entire function, also called an integral function, is a complex-valued function that is holomorphic over the whole complex plane. Typical examples of entire functions are the polynomials and the exponential function, and any sums, products and compositions of these, including the error function and the trigonometric functions sine and cosine and their hyperbolic counterparts the hyperbolic sine and hyperbolic cosine functions. Neither the natural logarithm nor the square root functions can be continued analytically to an entire function.
A transcendental entire function is an entire function that is not a polynomial (see transcendental function).
Read more about Entire Function: Properties, Order and Growth, Other Examples
Famous quotes containing the words entire and/or function:
“The idea of bringing someone into the world fills me with horror. I would curse myself if I were a father. A son of mine! Oh no, no, no! May my entire flesh perish and may I transmit to no one the aggravations and the disgrace of existence.”
—Gustave Flaubert (18211880)
“As a medium of exchange,... worrying regulates intimacy, and it is often an appropriate response to ordinary demands that begin to feel excessive. But from a modernized Freudian view, worryingas a reflex response to demandnever puts the self or the objects of its interest into question, and that is precisely its function in psychic life. It domesticates self-doubt.”
—Adam Phillips, British child psychoanalyst. Worrying and Its Discontents, in On Kissing, Tickling, and Being Bored, p. 58, Harvard University Press (1993)