Endomorphism Ring - Description

Description

Let A be an abelian group and f and g be two group homomorphisms from A into itself. Then the functions may be added pointwise to produce a group homomorphism. Under this operation End(A) is an Abelian group. With the additional operation of function composition, End(A) is a ring with multiplicative identity. The multiplicative identity is the identity function on A.

If the set A does not form an Abelian group, then the above construction does not result in the set of endomorphisms being an additive group, as the sum of two homomorphisms need not be a homomorphism in that case. This set of endomorphisms is a canonical example of a near-ring which is not a ring.

Read more about this topic:  Endomorphism Ring

Famous quotes containing the word description:

    The great object in life is Sensation—to feel that we exist, even though in pain; it is this “craving void” which drives us to gaming, to battle, to travel, to intemperate but keenly felt pursuits of every description whose principal attraction is the agitation inseparable from their accomplishment.
    George Gordon Noel Byron (1788–1824)

    The type of fig leaf which each culture employs to cover its social taboos offers a twofold description of its morality. It reveals that certain unacknowledged behavior exists and it suggests the form that such behavior takes.
    Freda Adler (b. 1934)

    Do not require a description of the countries towards which you sail. The description does not describe them to you, and to- morrow you arrive there, and know them by inhabiting them.
    Ralph Waldo Emerson (1803–1882)