Endomorphism Ring - Description

Description

Let A be an abelian group and f and g be two group homomorphisms from A into itself. Then the functions may be added pointwise to produce a group homomorphism. Under this operation End(A) is an Abelian group. With the additional operation of function composition, End(A) is a ring with multiplicative identity. The multiplicative identity is the identity function on A.

If the set A does not form an Abelian group, then the above construction does not result in the set of endomorphisms being an additive group, as the sum of two homomorphisms need not be a homomorphism in that case. This set of endomorphisms is a canonical example of a near-ring which is not a ring.

Read more about this topic:  Endomorphism Ring

Famous quotes containing the word description:

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St. Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)

    God damnit, why must all those journalists be such sticklers for detail? Why, they’d hold you to an accurate description of the first time you ever made love, expecting you to remember the color of the room and the shape of the windows.
    Lyndon Baines Johnson (1908–1973)

    To give an accurate description of what has never occurred is not merely the proper occupation of the historian, but the inalienable privilege of any man of parts and culture.
    Oscar Wilde (1854–1900)