Definition
In general, let G be a finite cyclic group with n elements. We assume that the group is written multiplicatively. Let b be a generator of G; then every element g of G can be written in the form g = bk for some integer k. Furthermore, any two such integers k1 and k2 representing g will be congruent modulo n. We can thus define a function
(where Zn denotes the ring of integers modulo n) by assigning to each g the congruence class of k modulo n. This function is a group isomorphism, called the discrete logarithm to base b.
The familiar base change formula for ordinary logarithms remains valid: If c is another generator of G, then we have
Read more about this topic: Discrete Logarithm
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)