Discrete Logarithm

Discrete Logarithm

In mathematics, specifically in abstract algebra and its applications, discrete logarithms are group-theoretic analogues of ordinary logarithms. In particular, an ordinary logarithm loga(b) is a solution of the equation ax = b over the real or complex numbers. Similarly, if g and h are elements of a finite cyclic group G then a solution x of the equation gx = h is called a discrete logarithm to the base g of h in the group G.

Read more about Discrete Logarithm:  Example, Definition, Algorithms, Comparison With Integer Factorization, Cryptography

Famous quotes containing the word discrete:

    The mastery of one’s phonemes may be compared to the violinist’s mastery of fingering. The violin string lends itself to a continuous gradation of tones, but the musician learns the discrete intervals at which to stop the string in order to play the conventional notes. We sound our phonemes like poor violinists, approximating each time to a fancied norm, and we receive our neighbor’s renderings indulgently, mentally rectifying the more glaring inaccuracies.
    W.V. Quine (b. 1908)