In mathematics, a Dirichlet series is any series of the form
where s and an are complex numbers and n = 1, 2, 3, ... . It is a special case of general Dirichlet series.
Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Johann Peter Gustav Lejeune Dirichlet.
Read more about Dirichlet Series: Combinatorial Importance, Examples, Formal Dirichlet Series, Analytic Properties of Dirichlet Series: The Abscissa of Convergence, Derivatives, Products, Integral Transforms, Relation To Power Series
Famous quotes containing the word series:
“I look on trade and every mechanical craft as education also. But let me discriminate what is precious herein. There is in each of these works an act of invention, an intellectual step, or short series of steps taken; that act or step is the spiritual act; all the rest is mere repetition of the same a thousand times.”
—Ralph Waldo Emerson (18031882)