Formal Dirichlet Series
A formal Dirichlet series over a ring R is associated to a function a from the positive integers to R
with addition and multiplication defined by
where
is the pointwise sum and
is the Dirichlet convolution of a and b.
The formal Dirichlet series form a ring Ω, indeed an R-algebra, with the zero function as additive zero element and the function δ defined by δ(1)=1, δ(n)=0 for n>1 as multiplicative identity. An element of this ring is invertible if a(1) is invertible in R. If R is commutative, so is Ω; if R is an integral domain, so is Ω. The non-zero multiplicative functions form a subgroup of the group of units of Ω.
The ring of formal Dirichlet series over C is isomorphic to a ring of formal power series in countably many variables.
Read more about this topic: Dirichlet Series
Famous quotes containing the words formal and/or series:
“On every formal visit a child ought to be of the party, by way of provision for discourse.”
—Jane Austen (17751817)
“Personality is an unbroken series of successful gestures.”
—F. Scott Fitzgerald (18961940)