Dirichlet Series - Formal Dirichlet Series

Formal Dirichlet Series

A formal Dirichlet series over a ring R is associated to a function a from the positive integers to R

with addition and multiplication defined by

where

is the pointwise sum and

is the Dirichlet convolution of a and b.

The formal Dirichlet series form a ring Ω, indeed an R-algebra, with the zero function as additive zero element and the function δ defined by δ(1)=1, δ(n)=0 for n>1 as multiplicative identity. An element of this ring is invertible if a(1) is invertible in R. If R is commutative, so is Ω; if R is an integral domain, so is Ω. The non-zero multiplicative functions form a subgroup of the group of units of Ω.

The ring of formal Dirichlet series over C is isomorphic to a ring of formal power series in countably many variables.

Read more about this topic:  Dirichlet Series

Famous quotes containing the words formal and/or series:

    I will not let him stir
    Till I have used the approvèd means I have,
    With wholesome syrups, drugs, and holy prayers,
    To make of him a formal man again.
    William Shakespeare (1564–1616)

    Rosalynn said, “Jimmy, if we could only get Prime Minister Begin and President Sadat up here on this mountain for a few days, I believe they might consider how they could prevent another war between their countries.” That gave me the idea, and a few weeks later, I invited both men to join me for a series of private talks. In September 1978, they both came to Camp David.
    Jimmy Carter (James Earl Carter, Jr.)