Analytic Properties of Dirichlet Series: The Abscissa of Convergence
Given a sequence {an}n ∈ N of complex numbers we try to consider the value of
as a function of the complex variable s. In order for this to make sense, we need to consider the convergence properties of the above infinite series:
If {an}n ∈ N is a bounded sequence of complex numbers, then the corresponding Dirichlet series f converges absolutely on the open half-plane of s such that Re(s) > 1. In general, if an = O(nk), the series converges absolutely in the half plane Re(s) > k + 1.
If the set of sums an + an + 1 + ... + an + k is bounded for n and k ≥ 0, then the above infinite series converges on the open half-plane of s such that Re(s) > 0.
In both cases f is an analytic function on the corresponding open half plane.
In general the abscissa of convergence of a Dirichlet series is the intercept on the real axis of the vertical line in the complex plane, such that there is convergence to the right of it, and divergence to the left. This is the analogue for Dirichlet series of the radius of convergence for power series. The Dirichlet series case is more complicated, though: absolute convergence and uniform convergence may occur in distinct half-planes.
In many cases, the analytic function associated with a Dirichlet series has an analytic extension to a larger domain.
Read more about this topic: Dirichlet Series
Famous quotes containing the words analytic and/or properties:
“You, that have not lived in thought but deed,
Can have the purity of a natural force,
But I, whose virtues are the definitions
Of the analytic mind, can neither close
The eye of the mind nor keep my tongue from speech.”
—William Butler Yeats (18651939)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)