Equivalence of Direct Sums
The direct sum is not unique for a group; for example, in the Klein group, V4 = C2 × C2, we have that
- V4 = <(0,1)> + <(1,0)> and
- V4 = <(1,1)> + <(1,0)>.
However, it is the content of the Remak-Krull-Schmidt theorem that given a finite group G = ∑Ai = ∑Bj, where each Ai and each Bj is non-trivial and indecomposable, then the two sums are equivalent up to reordering and isomorphism of the subgroups involved.
The Remak-Krull-Schmidt theorem fails for infinite groups; so in the case of infinite G = H + K = L + M, even when all subgroups are non-trivial and indecomposable, we cannot then assume that H is isomorphic to either L or M.
Read more about this topic: Direct Sum Of Groups
Famous quotes containing the words direct and/or sums:
“I should say that the most prominent scientific men of our country, and perhaps of this age, are either serving the arts and not pure science, or are performing faithful but quite subordinate labors in particular departments. They make no steady and systematic approaches to the central fact.... There is wanting constant and accurate observation with enough of theory to direct and discipline it. But, above all, there is wanting genius.”
—Henry David Thoreau (18171862)
“At Timons villalet us pass a day,
Where all cry out,What sums are thrown away!”
—Alexander Pope (16881744)