Small Dihedral Groups
For n = 1 we have Dih1. This notation is rarely used except in the framework of the series, because it is equal to Z2. For n = 2 we have Dih2, the Klein four-group. Both are exceptional within the series:
- They are abelian; for all other values of n the group Dihn is not abelian.
- They are not subgroups of the symmetric group Sn, corresponding to the fact that 2n > n ! for these n.
The cycle graphs of dihedral groups consist of an n-element cycle and n 2-element cycles. The dark vertex in the cycle graphs below of various dihedral groups stand for the identity element, and the other vertices are the other elements of the group. A cycle consists of successive powers of either of the elements connected to the identity element.
|
Read more about this topic: Dihedral Group
Famous quotes containing the words small and/or groups:
“Little-minded peoples thoughts move in such small circles that five minutes conversation gives you an arc long enough to determine their whole curve.”
—Oliver Wendell Holmes, Sr. (18091894)
“screenwriter
Policemen so cherish their status as keepers of the peace and protectors of the public that they have occasionally been known to beat to death those citizens or groups who question that status.”
—David Mamet (b. 1947)