Dihedral Group - Small Dihedral Groups

Small Dihedral Groups

For n = 1 we have Dih1. This notation is rarely used except in the framework of the series, because it is equal to Z2. For n = 2 we have Dih2, the Klein four-group. Both are exceptional within the series:

  • They are abelian; for all other values of n the group Dihn is not abelian.
  • They are not subgroups of the symmetric group Sn, corresponding to the fact that 2n > n ! for these n.

The cycle graphs of dihedral groups consist of an n-element cycle and n 2-element cycles. The dark vertex in the cycle graphs below of various dihedral groups stand for the identity element, and the other vertices are the other elements of the group. A cycle consists of successive powers of either of the elements connected to the identity element.

Dih1 Dih2 Dih3 Dih4 Dih5 Dih6 Dih7

Read more about this topic:  Dihedral Group

Famous quotes containing the words small and/or groups:

    Our panaceas cure but few ails, our general hospitals are private and exclusive. We must set up another Hygeia than is now worshiped. Do not the quacks even direct small doses for children, larger for adults, and larger still for oxen and horses? Let us remember that we are to prescribe for the globe itself.
    Henry David Thoreau (1817–1862)

    Trees appeared in groups and singly, revolving coolly and blandly, displaying the latest fashions. The blue dampness of a ravine. A memory of love, disguised as a meadow. Wispy clouds—the greyhounds of heaven.
    Vladimir Nabokov (1899–1977)