In mathematics, a dihedral group is the group of symmetries of a regular polygon, including both rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry. It is well-known and quite trivial to prove that a group generated by two involutions is a dihedral group.
See also: Dihedral symmetry in three dimensionsRead more about Dihedral Group: Notation, Small Dihedral Groups, The Dihedral Group As Symmetry Group in 2D and Rotation Group in 3D, Equivalent Definitions, Properties, Automorphism Group, Generalizations
Famous quotes containing the word group:
“Laughing at someone else is an excellent way of learning how to laugh at oneself; and questioning what seem to be the absurd beliefs of another group is a good way of recognizing the potential absurdity of many of ones own cherished beliefs.”
—Gore Vidal (b. 1925)