Dihedral Group - Automorphism Group

Automorphism Group

The automorphism group of Dihn is isomorphic to the affine group Aff(Z/nZ) and has order where is Euler's totient function, the number of k in coprime to n.

It can be understood in terms of the generators of a reflection and an elementary rotation (rotation by, for k coprime to n); which automorphisms are inner and outer depends on the parity of n.

  • For n odd, the dihedral group is centerless, so any element defines a non-trivial inner automorphism; for n even, the rotation by 180° (reflection through the origin) is the non-trivial element of the center.
  • Thus for n odd, the inner automorphism group has order 2n, and for n even the inner automorphism group has order n.
  • For n odd, all reflections are conjugate; for n even, they fall into two classes (those through two vertices and those through two faces), related by an outer automorphism, which can be represented by rotation by (half the minimal rotation).
  • The rotations are a normal subgroup; conjugation by a reflection changes the sign (direction) of the rotation, but otherwise leaves them unchanged. Thus automorphisms that multiply angles by k (coprime to n) are outer unless

Read more about this topic:  Dihedral Group

Famous quotes containing the word group:

    We often overestimate the influence of a peer group on our teenager. While the peer group is most influential in matters of taste and preference, we parents are most influential in more abiding matters of standards, beliefs, and values.
    David Elkind (20th century)