Automorphism Group
The automorphism group of Dihn is isomorphic to the affine group Aff(Z/nZ) and has order where is Euler's totient function, the number of k in coprime to n.
It can be understood in terms of the generators of a reflection and an elementary rotation (rotation by, for k coprime to n); which automorphisms are inner and outer depends on the parity of n.
- For n odd, the dihedral group is centerless, so any element defines a non-trivial inner automorphism; for n even, the rotation by 180° (reflection through the origin) is the non-trivial element of the center.
- Thus for n odd, the inner automorphism group has order 2n, and for n even the inner automorphism group has order n.
- For n odd, all reflections are conjugate; for n even, they fall into two classes (those through two vertices and those through two faces), related by an outer automorphism, which can be represented by rotation by (half the minimal rotation).
- The rotations are a normal subgroup; conjugation by a reflection changes the sign (direction) of the rotation, but otherwise leaves them unchanged. Thus automorphisms that multiply angles by k (coprime to n) are outer unless
Read more about this topic: Dihedral Group
Famous quotes containing the word group:
“If the Russians have gone too far in subjecting the child and his peer group to conformity to a single set of values imposed by the adult society, perhaps we have reached the point of diminishing returns in allowing excessive autonomy and in failing to utilize the constructive potential of the peer group in developing social responsibility and consideration for others.”
—Urie Bronfenbrenner (b. 1917)