Description
Differential topology considers the properties and structures that require only a smooth structure on a manifold to be defined. Smooth manifolds are 'softer' than manifolds with extra geometric structures, which can act as obstructions to certain types of equivalences and deformations that exist in differential topology. For instance, volume and Riemannian curvature are invariants that can distinguish different geometric structures on the same smooth manifold—that is, one can smoothly "flatten out" certain manifolds, but it might require distorting the space and affecting the curvature or volume.
On the other hand, smooth manifolds are more rigid than the topological manifolds. John Milnor discovered that some spheres have more than one smooth structure—see exotic sphere and Donaldson's theorem. Kervaire exhibited topological manifolds with no smooth structure at all. Some constructions of smooth manifold theory, such as the existence of tangent bundles, can be done in the topological setting with much more work, and others cannot.
One of the main topics in differential topology is the study of special kinds of smooth mappings between manifolds, namely immersions and submersions, and the intersections of submanifolds via transversality. More generally one is interested in properties and invariants of smooth manifolds which are carried over by diffeomorphisms, another special kind of smooth mapping. Morse theory is another branch of differential topology, in which topological information about a manifold is deduced from changes in the rank of the Jacobian of a function.
For a list of differential topology topics, see the following reference: List of differential geometry topics.
Read more about this topic: Differential Topology
Famous quotes containing the word description:
“The Sage of Toronto ... spent several decades marveling at the numerous freedoms created by a global village instantly and effortlessly accessible to all. Villages, unlike towns, have always been ruled by conformism, isolation, petty surveillance, boredom and repetitive malicious gossip about the same families. Which is a precise enough description of the global spectacles present vulgarity.”
—Guy Debord (b. 1931)
“It [Egypt] has more wonders in it than any other country in the world and provides more works that defy description than any other place.”
—Herodotus (c. 484424 B.C.)
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)