Dicyclic Group - Binary Dihedral Group

Binary Dihedral Group

The dicyclic group is a binary polyhedral group — it is one of the classes of subgroups of the Pin group Pin(2), which is a subgroup of the Spin group Spin(3) — and in this context is known as the binary dihedral group.

The connection with the binary cyclic group C2n, the cyclic group Cn, and the dihedral group Dihn of order 2n is illustrated in the diagram at right, and parallels the corresponding diagram for the Pin group.

There is a superficial resemblance between the dicyclic groups and dihedral groups; both are a sort of "mirroring" of an underlying cyclic group. But the presentation of a dihedral group would have x2 = 1, instead of x2 = an; and this yields a different structure. In particular, Dicn is not a semidirect product of A and <x>, since A ∩ <x> is not trivial.

The dicyclic group has a unique involution (i.e. an element of order 2), namely x2 = an. Note that this element lies in the center of Dicn. Indeed, the center consists solely of the identity element and x2. If we add the relation x2 = 1 to the presentation of Dicn one obtains a presentation of the dihedral group Dih2n, so the quotient group Dicn/<x2> is isomorphic to Dihn.

There is a natural 2-to-1 homomorphism from the group of unit quaternions to the 3-dimensional rotation group described at quaternions and spatial rotations. Since the dicyclic group can be embedded inside the unit quaternions one can ask what the image of it is under this homomorphism. The answer is just the dihedral symmetry group Dihn. For this reason the dicyclic group is also known as the binary dihedral group. Note that the dicyclic group does not contain any subgroup isomorphic to Dihn.

The analogous pre-image construction, using Pin+(2) instead of Pin(2), yields another dihedral group, Dih2n, rather than a dicyclic group.

Read more about this topic:  Dicyclic Group

Famous quotes containing the word group:

    Belonging to a group can provide the child with a variety of resources that an individual friendship often cannot—a sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social life—of inclusion and exclusion, conformity and independence.
    Zick Rubin (20th century)