In group theory, a dicyclic group (notation Dicn) is a member of a class of non-abelian groups of order 4n (n > 1). It is an extension of the cyclic group of order 2 by a cyclic group of order 2n, giving the name di-cyclic. In the notation of exact sequences of groups, this extension can be expressed as:
More generally, given any finite abelian group with an order-2 element, one can define a dicyclic group.
Read more about Dicyclic Group: Definition, Properties, Binary Dihedral Group, Generalizations
Famous quotes containing the word group:
“The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.”
—Babette Deutsch (18951982)