Definition
For each integer n > 1, the dicyclic group Dicn can be defined as the subgroup of the unit quaternions generated by
More abstractly, one can define the dicyclic group Dicn as any group having the presentation
Some things to note which follow from this definition:
- x4 = 1
- x2ak = ak+n = akx2
- if j = ±1, then xjak = a-kxj.
- akx−1 = ak−nanx−1 = ak−nx2x−1 = ak−nx.
Thus, every element of Dicn can be uniquely written as akxj, where 0 ≤ k < 2n and j = 0 or 1. The multiplication rules are given by
It follows that Dicn has order 4n.
When n = 2, the dicyclic group is isomorphic to the quaternion group Q. More generally, when n is a power of 2, the dicyclic group is isomorphic to the generalized quaternion group.
Read more about this topic: Dicyclic Group
Famous quotes containing the word definition:
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)