Definition
For each integer n > 1, the dicyclic group Dicn can be defined as the subgroup of the unit quaternions generated by
More abstractly, one can define the dicyclic group Dicn as any group having the presentation
Some things to note which follow from this definition:
- x4 = 1
- x2ak = ak+n = akx2
- if j = ±1, then xjak = a-kxj.
- akx−1 = ak−nanx−1 = ak−nx2x−1 = ak−nx.
Thus, every element of Dicn can be uniquely written as akxj, where 0 ≤ k < 2n and j = 0 or 1. The multiplication rules are given by
It follows that Dicn has order 4n.
When n = 2, the dicyclic group is isomorphic to the quaternion group Q. More generally, when n is a power of 2, the dicyclic group is isomorphic to the generalized quaternion group.
Read more about this topic: Dicyclic Group
Famous quotes containing the word definition:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)