Cyclotomic Field - Relation With Regular Polygons

Relation With Regular Polygons

Gauss made early inroads in the theory of cyclotomic fields, in connection with the geometrical problem of constructing a regular n-gon with a compass and straightedge. His surprising result that had escaped his predecessors was that a regular heptadecagon (with 17 sides) could be so constructed. More generally, if p is a prime number, then a regular p-gon can be constructed if and only if p is a Fermat prime; in other words if is a power of 2.

For n = 3 and n = 6 primitive roots of unity admit a simple expression via square root of three, namely:

ζ3 = √3 i − 1/2, ζ6 = √3 i + 1/2

Hence, both corresponding cyclotomic fields are identical to the quadratic field Q(√−3). In the case of ζ4 = i = √−1 the identity of Q4) to a quadratic field is even more obvious. This is not the case for n = 5 though, because expressing roots of unity requires square roots of quadratic integers, that means that roots belong to a second iteration of quadratic extension. The geometric problem for a general n can be reduced to the following question in Galois theory: can the nth cyclotomic field be built as a sequence of quadratic extensions?

Read more about this topic:  Cyclotomic Field

Famous quotes containing the words relation with, relation and/or regular:

    [Man’s] life consists in a relation with all things: stone, earth, trees, flowers, water, insects, fishes, birds, creatures, sun, rainbow, children, women, other men. But his greatest and final relation is with the sun.
    —D.H. (David Herbert)

    The instincts of the ant are very unimportant, considered as the ant’s; but the moment a ray of relation is seen to extend from it to man, and the little drudge is seen to be a monitor, a little body with a mighty heart, then all its habits, even that said to be recently observed, that it never sleeps, become sublime.
    Ralph Waldo Emerson (1803–1882)

    While you’re playing cards with a regular guy or having a bite to eat with him, he seems a peaceable, good-humoured and not entirely dense person. But just begin a conversation with him about something inedible, politics or science, for instance, and he ends up in a deadend or starts in on such an obtuse and base philosophy that you can only wave your hand and leave.
    Anton Pavlovich Chekhov (1860–1904)