In number theory, a cyclotomic field is a number field obtained by adjoining a complex primitive root of unity to Q, the field of rational numbers. The n-th cyclotomic field Q(ζn) (with n > 2) is obtained by adjoining a primitive n-th root of unity ζn to the rational numbers.
The cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's last theorem. It was in the process of his deep investigations of the arithmetic of these fields (for prime n) – and more precisely, because of the failure of unique factorization in their rings of integers – that Ernst Kummer first introduced the concept of an ideal number and proved his celebrated congruences.
Read more about Cyclotomic Field: Properties, Relation With Regular Polygons, Relation With Fermat's Last Theorem
Famous quotes containing the word field:
“When it had long since outgrown his purely medical implications and become a world movement which penetrated into every field of science and every domain of the intellect: literature, the history of art, religion and prehistory; mythology, folklore, pedagogy, and what not.”
—Thomas Mann (18751955)