Minimal Model of Set Theory Is Countable
If there is a set which is a standard model (see inner model) of ZFC set theory, then there is a minimal standard model (see Constructible universe). The Löwenheim-Skolem theorem can be used to show that this minimal model is countable. The fact that the notion of "uncountability" makes sense even in this model, and in particular that this model M contains elements which are
- subsets of M, hence countable,
- but uncountable from the point of view of M,
was seen as paradoxical in the early days of set theory, see Skolem's paradox.
The minimal standard model includes all the algebraic numbers and all effectively computable transcendental numbers, as well as many other kinds of numbers.
Read more about this topic: Countable Set
Famous quotes containing the words minimal, model, set and/or theory:
“For those parents from lower-class and minority communities ... [who] have had minimal experience in negotiating dominant, external institutions or have had negative and hostile contact with social service agencies, their initial approaches to the school are often overwhelming and difficult. Not only does the school feel like an alien environment with incomprehensible norms and structures, but the families often do not feel entitled to make demands or force disagreements.”
—Sara Lawrence Lightfoot (20th century)
“It has to be acknowledged that in capitalist society, with its herds of hippies, originality has become a sort of fringe benefit, a mere convention, accepted obsolescence, the Beatnik model being turned in for the Hippie model, as though strangely obedient to capitalist laws of marketing.”
—Mary McCarthy (19121989)
“I set out as a sort of self-dependent politician. My opinions were my own. I dashed at all prejudices. I scorned to follow anybody in matter of opinion.... All were, therefore, offended at my presumption, as they deemed it.”
—William Cobbett (17621835)
“In the theory of gender I began from zero. There is no masculine power or privilege I did not covet. But slowly, step by step, decade by decade, I was forced to acknowledge that even a woman of abnormal will cannot escape her hormonal identity.”
—Camille Paglia (b. 1947)