Surjective Function

A surjective function is a function whose image is equal to its codomain. Equivalently, a function f with domain X and codomain Y is surjective if for every y in Y there exists at least one x in X with . Surjections are sometimes denoted by a two-headed rightwards arrow, as in f : XY.

Symbolically,

Let, then is said to be surjective if

Read more about Surjective Function:  Examples, Properties

Famous quotes containing the word function:

    To look backward for a while is to refresh the eye, to restore it, and to render it the more fit for its prime function of looking forward.
    Margaret Fairless Barber (1869–1901)