Continuum Hypothesis - Arguments For and Against CH

Arguments For and Against CH

Gödel believed that CH is false and that his proof that CH is consistent only shows that the Zermelo–Fraenkel axioms do not adequately describe the universe of sets. Gödel was a platonist and therefore had no problems with asserting the truth and falsehood of statements independent of their provability. Cohen, though a formalist, also tended towards rejecting CH.

Historically, mathematicians who favored a "rich" and "large" universe of sets were against CH, while those favoring a "neat" and "controllable" universe favored CH. Parallel arguments were made for and against the axiom of constructibility, which implies CH. More recently, Matthew Foreman has pointed out that ontological maximalism can actually be used to argue in favor of CH, because among models that have the same reals, models with "more" sets of reals have a better chance of satisfying CH (Maddy 1988, p. 500).

Another viewpoint is that the conception of set is not specific enough to determine whether CH is true or false. This viewpoint was advanced as early as 1923 by Skolem, even before Gödel's first incompleteness theorem. Skolem argued on the basis of what is now known as Skolem's paradox, and it was later supported by the independence of CH from the axioms of ZFC, since these axioms are enough to establish the elementary properties of sets and cardinalities. In order to argue against this viewpoint, it would be sufficient to demonstrate new axioms that are supported by intuition and resolve CH in one direction or another. Although the axiom of constructibility does resolve CH, it is not generally considered to be intuitively true any more than CH is generally considered to be false (Kunen 1980, p. 171).

At least two other axioms have been proposed that have implications for the continuum hypothesis, although these axioms have not currently found wide acceptance in the mathematical community. In 1986, Chris Freiling presented an argument against CH by showing that the negation of CH is equivalent to Freiling's axiom of symmetry, a statement about probabilities. Freiling believes this axiom is "intuitively true" but others have disagreed. A difficult argument against CH developed by W. Hugh Woodin has attracted considerable attention since the year 2000 (Woodin 2001a, 2001b). Foreman (2003) does not reject Woodin's argument outright but urges caution.

Solomon Feferman (2011) has made a complex philosophical argument that CH is not a definite mathematical problem. He proposes a theory of "definiteness" using a semi-intuitionistic subsystem of ZF that accepts classical logic for bounded quantifiers but uses intuitionistic logic for unbounded ones, and suggests that a proposition is mathematically "definite" if the semi-intuitionistic theory can prove . He conjectures that CH is not definite according to this notion, and proposes that CH should therefore be considered to not have a truth value. Peter Koellner (2011b) wrote a critical commentary on Feferman's article.

Read more about this topic:  Continuum Hypothesis

Famous quotes containing the word arguments:

    There is no assurance of the great fact in question [namely, immortality]. All the arguments are mere probabilities, analogies, fancies, whims. We believe, or disbelieve, or are in doubt according to our own make-up—to accidents, to education, to environment. For myself, I do not reach either faith or belief ... that I—the conscious person talking to you—will meet you in the world beyond—you being yourself a conscious person—the same person now reading what I say.
    Rutherford Birchard Hayes (1822–1893)