In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra.
Some specific kinds of commutative rings are given with the following chain of class inclusions:
- Commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields
Algebraic structures |
---|
Group-like structures
Semigroup and Monoid Quasigroup and Loop Abelian group |
Ring-like structures
Semiring Near-ring Ring Commutative ring Integral domain Field |
Lattice-like structures
Semilattice Lattice Map of lattices |
Module-like structures
Group with operators Module Vector space |
Algebra-like structures
Algebra Associative algebra Non-associative algebra Graded algebra Bialgebra |
Read more about Commutative Ring: Ideals and The Spectrum, Ring Homomorphisms, Modules, Noetherian Rings, Dimension, Constructing Commutative Rings, Properties
Famous quotes containing the word ring:
“But whatever happens, wherever the scene is laid, somebody, somewhere, will quietly set outsomebody has already set out, somebody still rather far away is buying a ticket, is boarding a bus, a ship, a plane, has landed, is walking toward a million photographers, and presently he will ring at my doora bigger, more respectable, more competent Gradus.”
—Vladimir Nabokov (18991977)